
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

One More Bit is Enough
Yong Xia, Member, IEEE, Lakshminarayanan Subramanian, Ion Stoica, and

Shivkumar Kalyanaraman, Member, IEEE

Abstract—Achieving efficient and fair bandwidth allocation
while minimizing packet loss and bottleneck queue in high band-
width-delay product networks has long been a daunting challenge.
Existing end-to-end congestion control (e.g., TCP) and traditional
congestion notification schemes (e.g., TCP+AQM/ECN) have sig-
nificant limitations in achieving this goal. While the XCP protocol
addresses this challenge, it requires multiple bits to encode the
congestion-related information exchanged between routers and
end-hosts. Unfortunately, there is no space in the IP header for
these bits, and solving this problem involves a non-trivial and
time-consuming standardization process.

In this paper, we design and implement a simple, low-com-
plexity protocol, called Variable-structure congestion Control
Protocol (VCP), that leverages only the existing two ECN bits
for network congestion feedback, and yet achieves comparable
performance to XCP, i.e., high utilization, negligible packet loss
rate, low persistent queue length, and reasonable fairness. On the
downside, VCP converges significantly slower to a fair allocation
than XCP. We evaluate the performance of VCP using extensive
ns2 simulations over a wide range of network scenarios and find
that it significantly outperforms many recently-proposed TCP
variants, such as HSTCP, FAST, CUBIC, etc. To gain insight into
the behavior of VCP, we analyze a simplified fluid model and
prove its global stability for the case of a single bottleneck shared
by synchronous flows with identical round-trip times.

Index Terms—AQM, ECN, congestion control, stability, TCP.

I. INTRODUCTION

THE Additive-Increase-Multiplicative-Decrease (AIMD)
[8] congestion control algorithm employed by TCP [1],

[17], [34] is known to be ill-suited for high Bandwidth-Delay
Product (BDP) networks. With rapid advances in the deploy-
ment of very high bandwidth links in the Internet, the need for
a viable replacement of TCP in such environments has become
increasingly important.

Manuscript received November 11, 2007; revised January 23, 2008; ap-
proved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor F. Paganini.
This work was supported in part by the National Science Foundation (NSF)
under Grants ITR-00225660, ANI-0515259, NSF Career Award ANI-0133811,
NSF-ITR 0313095, in part by the Defense Advanced Research Projects Agency
(DARPA) under Contract F30602-00-2-0537, in part by the California MICRO
Program, in part by the Air Force ESC Hanscom, in part by MIT Lincoln
Laboratory Letter No. 14-S-06-0206, and in part by Grants from Intel and
AT&T Laboratories Research. An earlier verion of this paper appeared in ACM
SIGCOMM 2005.

Y. Xia is with the NEC Laboratories China, Beijing 100084, China (e-mail:
xiayong@research.nec.com.cn; xy12180@gmail.com).

L. Subramanian is with the Computer Science Department, New York Uni-
versity, New York, NY 10003 USA (e-mail: lakshmi@cs.nyu.edu).

I. Stoica is with the Computer Science Division, University of California,
Berkeley, CA 94720 USA (e-mail: istoica@cs.berkeley.edu).

S. Kalyanaraman is with the Electrical, Computer, and Systems Engineering
Department, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
shivkuma@ecse.rpi.edu).

Digital Object Identifier 10.1109/TNET.2007.912037

Several research efforts have proposed different approaches
for this problem, each with their own strengths and limitations.
These can be broadly classified into two categories: end-to-end
and network feedback based approaches. Pure end-to-end con-
gestion control schemes such as HSTCP [13], FAST [22], BIC/
CUBIC [41], [48], STCP [26], and HTCP [31], although being
attractive short-term solutions (due to a lesser deployment bar-
rier), may not be suitable for the long term. Indeed, for conges-
tion control purpose, the end-to-end schemes artificially intro-
duce packet loss or queuing delay at bottleneck routers, which
should be avoided in the first place. Otherwise, it incurs unde-
sirable effects such as periodical increase in end-to-end delay,
which makes real-time applications like VoIP and video confer-
encing very hard to work well in the Internet.

To address the limitations of end-to-end congestion control
schemes, many researchers have proposed the use of explicit
network feedback. However, while traditional congestion no-
tification schemes such as Active Queue Management (AQM)
and Explicit Congestion Notification (ECN) proposals [2], [15],
[29], [39] are successful in reducing the loss rate and the queue
size in the network, they still fall short in achieving high utiliza-
tion in high BDP networks. This remains true even if we replace
the standard TCP with the high-speed TCP variants mentioned
above, as shown by the simulation results in Section IV. XCP
[25] addresses this problem by having routers estimate the fair
flow rate and send this rate back to the senders and achieves
excellent performance. Congestion control schemes that use ex-
plicit rate feedback have also been proposed in the context of
the ATM Available Bit Rate (ABR) service [19], [24]. However,
these schemes are hard to deploy in today’s Internet as they re-
quire a non-trivial number of bits to encode the rate, bits which
are not available in the IP header.

The above-discussed schemes represent two ends of a spec-
trum of congestion control solutions that differ in the amount
of congestion information feedback from the network to the
end hosts. At one end of the spectrum, the TCP+AQM/ECN
schemes require no more than one bit information per packet.
At the other end, XCP and ATM ABR schemes encode in each
packet multiple bits of congestion information. More conges-
tion information results in better performance. It is therefore in-
triguing to ask how many explicit bits per packet is sufficient to
achieve XCP-comparable performance.

From an architectural point of view, XCP represents a big de-
parture from the traditional TCP+AQM/ECN approach. XCP’s
congestion and fairness control algorithms run inside the net-
work routers, not in the end hosts. As a consequence, XCP has
a different deployment path from TCP+AQM/ECN. While the
latter can start its deployment from the end hosts, and then in-
crementally add the AQM and ECN support into the network
along the way, the former has to start from inside the network. In

1063-6692/$25.00 © IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

practice the end-host approach’s deployment path seems easier
to bootstrap.

In this paper, we show that it is possible to approximate
XCP’s performance in high BDP networks by leveraging only
the two ECN bits (already present in the IP header) to encode
three congestion states while still keeping TCP+AQM/ECN’s
architecture. The crux of our algorithm, called Variable-struc-
ture congestion Control Protocol (VCP), is to dynamically
adapt the congestion control policy as a function of the level
of congestion in the network. With VCP, each router computes
a load factor [19], and uses this factor to classify the level of
congestion into three regions: low-load, high-load and overload
[20]. The router encodes the level of congestion in the ECN bits.
As with ECN, the receiver echoes the congestion information
back to the sender via acknowledgement (ACK) packets. Based
on the load region reported by the network, the sender uses one
of the following policies: Multiplicative Increase (MI) in the
low-load region, Additive Increase (AI) in the high-load region,
and Multiplicative Decrease (MD) in the overload region. By
using MI in the low-load region, flows can exponentially ramp
up their bandwidth to improve network utilization quickly.
Once high utilization is attained, AIMD provides long-term
fairness amongst the competing flows.

Using extensive packet-level ns2 [35] simulations that cover
a wide range of network scenarios, we show that VCP can ap-
proximate the performance of XCP by achieving high utiliza-
tion, negligible packet loss rate, low persistent queue length and
reasonable fairness. One limitation of VCP (as is the case for
other end-host based AIMD approaches including TCP and its
many variants) is that it converges significantly slower to a fair
allocation than XCP.

To better understand VCP, we analyze its stability and fair-
ness properties using a simplified fluid model that approximates
VCP’s behavior. For the case of a single bottleneck link shared
by flows with identical round-trip delays, we prove that the
model asymptotically achieves global stability independent of
the link capacity, the feedback delay and the number of flows.
For more general multiple-bottleneck topologies, we show that
the equilibrium rate allocation of this model is max-min fair
[4]. While this model may not accurately reflect VCP’s dy-
namics, it does reinforce the stability and fairness properties that
we observe in our simulations and provides a good theoretical
grounding for VCP.

From a practical point of view VCP has two advantages. First,
VCP does not require any modifications to the IP header since it
can reuse the two ECN bits in a way that is compatible with the
ECN proposal [39]. Second, it is a simple protocol with low al-
gorithmic complexity. The complexity of VCP’s end-host algo-
rithm is similar to that of TCP. The router algorithm maintains
no per-flow state, and it has very low computation cost.

The rest of the paper is organized as follows. In Section II,
we describe the guidelines that motivate the design of VCP and
in Section III, we provide a detailed description of the VCP
protocol. In Section IV, we evaluate VCP’s performance using
extensive simulations and compare with XCP as well as many
other recently-proposed TCP variants. In Section V, we develop
a fluid model that approximates VCP’s behavior and charac-
terize its stability, fairness and convergence properties, with the
detailed proofs presented in the technical report [47]. Section VI

addresses concerns on the stability of VCP under heterogeneous
delays and the influence of switching between MI, AI and MD
on efficiency and fairness. It also discusses VCP’s TCP-friend-
liness and incremental deployment issues. We review related
work in Section VII and summarize our findings in Section VIII.

II. FOUNDATIONS

Let us first review why XCP scales to high BDP networks
better than the existing TCP+AQM/ECN schemes. Then, we
present two guidelines that form the basis of the VCP design.

There are two main reasons for why TCP does not scale to
high BDP networks. First, packet loss is a binary congestion
signal that conveys no information about the degree of conges-
tion. Second, due to stability reasons, relying only on packet
loss for congestion indication requires TCP to use a conserva-
tive window increment policy and an aggressive window decre-
ment policy [17], [25]. In high BDP networks, every loss event
forces a TCP flow to perform an MD, followed by the slow con-
vergence of the AI algorithm to reach high utilization. Since
the time for each individual AIMD epoch is proportional to the
per-flow BDP, TCP flows remain in low utilization regions for
prolonged periods of time thereby resulting in poor link utiliza-
tion. Using AQM/ECN in conjunction with TCP does not solve
this problem since the (one-bit) ECN feedback, similar to packet
loss, is not indicative of the degree of congestion either.

XCP addresses this problem by precisely measuring the fair
share of a flow at a router and providing explicit rate feed-
back to end-hosts. One noteworthy aspect of XCP is the decou-
pling of efficiency control and fairness control at each router.
XCP uses MIMD to control the flow aggregate and to converge
exponentially fast to any available bandwidth and uses AIMD
to fairly allocate the bandwidth among competing flows. As a
consequence, XCP requires multiple bits in the packet header
to carry bandwidth allocation information from net-
work routers to end-hosts, and congestion window and
Round-Trip Time (RTT) information from the end-hosts
to the network routers.

A. Design Guidelines

The main goal of our work is to develop a simple conges-
tion control mechanism that can scale to high BDP networks.
By “simple” we mean an AQM-style approach where routers
merely provide feedback on the level of network congestion, and
end-hosts perform congestion control actions using this feed-
back. Furthermore, to maintain the compatibility with the ex-
isting IP header format, we restrict ourselves to using only two
bits to encode the congestion information. To address these chal-
lenges, our solution builds around two design guidelines:

1) Decouple efficiency control and fairness control
Like XCP, VCP decouples efficiency and fairness control.
However, unlike XCP where routers run the efficiency and
fairness control algorithms and then explicitly communi-
cate the fair rate to end-hosts, VCP routers compute only
a congestion level, and end-hosts run one of the two al-
gorithms as a function of the congestion level. More pre-
cisely, VCP classifies the network utilization into different
utilization regions [20] and determines the controller that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 3

is suitable for each region. Efficiency and fairness have dif-
ferent levels of relative importance in different utilization
regions. When network utilization is low, the goal of VCP
is to improve efficiency more than fairness. On the other
hand, when utilization is high, VCP accords higher priority
to fairness than efficiency. By decoupling these two issues,
end-hosts have only a single objective in each region and
thus need to apply only one congestion response. For ex-
ample, one such choice of congestion response, which we
use in VCP, is to perform MI in low utilization regions
for improving efficiency, and to apply AIMD in high uti-
lization regions for achieving fairness. The goal then is
to switch appropriately between these two congestion re-
sponses depending on the level of network utilization.

2) Use link load factor as the congestion signal
XCP uses spare bandwidth (the difference between ca-
pacity and demand) as a measure of the degree of conges-
tion. In VCP, we use load factor as the congestion signal,
i.e., the relative ratio of demand and capacity [19]. While
the load factor conveys less information than spare band-
width, the fact that the load factor is a scale-free param-
eter allows us to encode it using a small number of bits
without much loss of information. In comparison to binary
congestion signals such as loss and one-bit ECN, the load
factor conveys more information about the degree of net-
work congestion. In this paper, we show that a two-bit en-
coding of the load factor is sufficient to approximate XCP’s
performance, which demonstrates the significant marginal
performance gain of this one more ECN bit.

B. A Simple Illustration

In this subsection, we give a high level description of VCP
using a simple example. A detailed description of VCP is pre-
sented in Section III. Periodically, each router measures the load
factor for its output links and classifies the load factor into three
utilization regions: low-load, high-load or overload. Each router
encodes the utilization regions in the two ECN bits in the IP
header of each data packet. In turn, the receiver sends back this
information to the sender via the ACK packets. Depending on
this congestion information, the sender applies different con-
gestion responses. If the router signals low-load, the sender in-
creases its sending rate using MI; if the router signals high-load,
the sender increases its sending rate using AI; otherwise, if the
router signals overload, the sender reduces its sending rate using
MD. The core of the VCP protocol is summarized by the fol-
lowing greatly simplified pseudo code.

1) Each router periodically estimates a load factor, and encodes
it into the data packets’ IP header. This information is then sent
back by the receiver to the sender via ACK packets;
2) Based on the load factor it receives, each sender performs
one of the following control algorithms:

2.1) For low-load, performs MI;
2.2) For high-load, performs AI;
2.3) For overload, performs MD.

Fig. 1 shows the throughput dynamics of two flows sharing
one bottleneck link. Clearly, VCP is successful in tracking the

Fig. 1. The throughput dynamics of two flows of the same RTT (80 ms). They
share one bottleneck with the capacity bouncing between 10 Mbps and 20 Mbps.
This simple example unveils VCP’s potential to quickly track changes in avail-
able bandwidth (with load-factor guided MIMD) and thereafter achieve a fair
bandwidth allocation (with AIMD).

bandwidth changes by using MIMD, and achieving fair alloca-
tion when the second flow arrives, by using AIMD.

The Internet, however, is much more complex than this sim-
plified example across many dimensions: the link capacities and
router buffer sizes are highly heterogeneous, the RTT of flows
may differ significantly, and the number of flows is unknown
and changes over time. We next describe the details of the VCP
protocol, which will be able to handle more realistic environ-
ments.

III. VCP PROTOCOL

In this section, we provide a detailed description of VCP. We
begin by presenting three key issues that need to be addressed
in the design of VCP. Then, we describe how we address each
of these issues in turn.

A. Key Design Issues

To make VCP a practical approach for the Internet-like
environments with significant heterogeneity in link capacities,
end-to-end RTTs, router buffer sizes and variable traffic char-
acteristics, we need to address the following three issues.

• Load factor transition point: VCP separates the network
load condition into three regions: low-load, high-load
and overload. The load factor transition point in the VCP
senders represents the boundary between the low-load
and high-load regions, which is also the demarcation
between applying MI and AI algorithms. The choice of the
transition point represents a tradeoff between achieving
high link utilization and responsiveness to congestion.
Achieving high network utilization requires a high value
for the transition point. But this choice negatively impacts
responsiveness to congestion, which in turn affects the
convergence time to achieve fairness. Additionally, given
that Internet traffic is inherently bursty, we require a re-
liable estimation algorithm of the load factor at the VCP
routers. We discuss these issues in Section III-B.

• Setting of congestion control parameters: Using MI for
congestion control is often fraught with the danger of in-
stability due to its large variations over short time scales.
To maintain stability and avoid large queues at routers, we
need to make sure that the aggregate rate of the VCP flows
using MI does not overshoot the link capacity. Similarly,
to achieve fairness, we need to make sure that a flow enters
the AI phase before the link gets congested. In order to sat-
isfy these criteria, we need an appropriate choice of MI, AI
and MD parameters that can achieve high utilization while
maintaining stability, fairness and small persistent queues.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

To better understand these issues, we first describe our pa-
rameter settings for a simplified network model, where all
flows have the same RTT and observe the same state of the
network load condition, i.e., all flows obtain synchronous
load factor feedback (Section III-C). We then generalize
our parameter choice for flows with heterogeneous RTTs.

• Heterogeneous RTTs: When flows have heterogeneous
RTTs, different flows can run different algorithms (i.e., MI,
AI, or MD) at a given time. This may lead to unpredictable
behavior. The RTT heterogeneity can have a significant
impact even when all flows run the same algorithm, if this
algorithm is MI. In this case, a flow with a lower RTT can
claim much more bandwidth than a flow with a higher RTT.
To address this problem, end-hosts need to adjust their MI
parameters according to their observed RTTs, as discussed
in Section III-D.

We now discuss these three design issues in greater detail.

B. Load Factor Transition Point

Consider a simple scenario involving a fixed set of long-lived
flows. The goal of VCP is to reach a steady state where the
system is near full utilization, and the flows use AIMD for con-
gestion control. To achieve this steady state, the choice of the
load factor transition point at the VCP senders should satisfy
three constraints:

• The transition point should be sufficiently high to enable
the system to obtain high overall utilization;

• After the flows perform an MD from an overloaded state,
the MD step should force the system to always enter the
high-load state, not the low-load state;

• If the utilization is marginally lower than the transition
point, a single MI step should only lift the system into the
high-load state, but not the overload state.

Let denote the MD factor, i.e., when using the MD
algorithm, the sender reduces the congestion window with the
factor (as in (4) in Section III-C). The first constraint requires
a high transition point. This choice coupled with the second
condition leads to a high value of . However, a very high
value of is undesirable as it decreases VCP’s response to
congestion. For example, if the transition point is 95%, then

, and it takes VCP at least 14 RTTs to halve the conges-
tion window. At the other end, if we chose (as in TCP
[17]), the transition point can be at most 50%, which reduces
the overall network utilization. To balance these conflicting re-
quirements, we chose , the same value used in the
DECbit scheme [40]. Given , we set the load factor transition
point to 80%. This gives us a “safety margin” of 7.5%, which
allows the system to operate in the AIMD mode in steady state.
In summary, we choose the following three ranges to encode the
load factor (see Fig. 2).

• Low-load region: when ;
• High-load region: when ;
• Overload region: when .

Then, the quantized load factor can be represented using a
two-bit code , i.e., , and for ,

and , respectively. The code is
reserved for ECN-unaware source hosts to signal “not-ECN-ca-

Fig. 2. The quantized load factor �̂ at a link l is a non-decreasing function of
the raw load factor � and can be represented by a two-bit code �̂ .

pable-transport” to ECN-capable routers, which is needed for
incremental deployment [39]. The encoded load factor is em-
bedded in the two-bit ECN field in the IP header.

Estimation of the Load Factor: Due to the bursty nature of
the Internet traffic, we need to estimate the load factor over an
appropriate time interval, . When choosing we need to bal-
ance two conflicting requirements. On one hand, should be
larger than the RTTs experienced by most flows to factor out the
burstiness induced by the flows’ responses to congestion. On the
other hand, should be small enough to avoid queue buildup.
Internet measurements [38] report that roughly 75%–90% of
flows have RTTs less than 200 ms. Hence, we set ms.
During every time interval , each VCP router estimates a load
factor for each of its output links as [2], [15], [19], [24], [29]

(1)

Here, is the amount of input traffic during the period , is
the persistent queue length during this period, controls how
fast the persistent queue drains [2], [15] (we set),1 is
the target utilization [29] (set to a value close to 1, e.g., we use
0.98), and is the link capacity. The input traffic is mea-
sured using a packet counter. To measure the persistent queue

, we use a low-pass filter that samples the instantaneous queue
size, , every , where (we chose ms).

C. Congestion Control Parameter Setting

In this section, we discuss the choice of parameters used by
VCP to implement the MI/AI/MD algorithms. To simplify the
discussion, we consider a single link shared by flows, whose
RTTs are equal to the link load factor estimation period, i.e.,

. Hence, the flows have synchronous feedback and their
control intervals are also in sync with the link load factor esti-
mation. We will discuss the case of heterogeneous RTTs in Sec-
tion III-D.

At any time , a VCP sender performs one of the three actions
based on the value of the encoded load factor sent by the network

(2)

(3)

(4)

where , , , and .
Based on the relationship between the choice of the load factor

1Note even though we explicitly take the router queue length into ac-
count, VCP’s congestion measurement is essentially load-based, instead of
queue-based. Adding the queue length into the total amount of traffic only
helps drain the queue faster.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 5

transition point and the MD parameter , we chose
(see Section III-B). We use as is in TCP [17].

Setting the MI Parameter: The stability of VCP is dictated
by the MI parameter . In network-based rate allocation ap-
proaches like XCP, the rate increase of a flow at any time is
proportional to the spare capacity available in the network [25].
Translating this into the VCP context, we require the MI of the
congestion window to be proportional to where rep-
resents the current load factor. During the MI phase, the cur-
rent sending rate of each flow is proportional to the current load
factor . Consequently, we obtain

(5)

where is a constant that determines the stability of VCP and
controls the speed to converge toward full utilization. Based on
analyzing the stability properties of this algorithm (see Theorem
1 in Section V), we set . Since end-hosts only obtain
feedback on the utilization region as opposed to the exact value
of the load factor, they need to make a conservative assumption
that the network load is near the transition point. Thus, the end-
hosts use the value of in the MI phase.

D. Handling RTT Heterogeneity With Parameter Scaling

Until now, we have considered the case where competing
flows have the same RTT, and this RTT is also equal to the load
factor estimation interval, . In this section, we relax these as-
sumptions by considering flows with heterogeneous RTTs. To
offset the impact of the RTT heterogeneity, we need to scale the
congestion control parameters used by the end-hosts according
to their RTTs.

Scaling the MI/AI Parameters: Consider a flow with a round
trip time , and assume that all the routers use the same in-
terval, , to estimate the load factor on each link. Let and
represent the unscaled MI and AI parameters as described in
Section III-C, where all flows have identical RTTs . To
handle the case of flows with different RTTs, we set the scaled
MI/AI parameters and as follows:2

(6)

(7)

An end-host uses the scaled parameters and in (2) and
(3) to adjust the congestion window after each RTT. The scaling
of these parameters emulates the behavior of all flows having
an identical RTT, which is equal to . The net result is that
over any time period, the window increase under either MI or
AI is independent of the flows’ RTTs. Thus, the influence of
RTT heterogeneity on VCP flow’s throughput is not as much as
on TCP’s [30], [36] (see Section IV-B).

Handling MD: MD is an impulse-like operation that is not
affected by the length of the RTT. Hence, the value of in (4)
needs not to be scaled with the RTT of the flow. However, to
avoid over reaction to the congestion signal, a flow should per-
form MD at most once during an estimation interval . Upon

2Equation (6) is the solution for 1 + � = (1 + �) where the right-hand
side is the MI amount of a flow with the RTT value rtt, during a time interval
t . Similarly, (7) is obtained by solving 1 + � = 1 + � .

getting the first load factor feedback that signals congestion (i.e.,
), the sender immediately reduces its congestion

window using (4), and then freezes the for a time
period of for a new load factor to be generated at the routers.
After this period, the end-host runs AI (since there should be no
congestion any more after the MD cut) for one RTT, which is
the time needed to obtain the new load factor.

Scaling for Fair Rate Allocation: RTT-based parameter
scaling, as described above, only ensures that the congestion
windows of two flows with different RTTs converge to the
same value in steady state. However, this does not guarantee
fairness as the rate of the flow is still inversely proportional to
its RTT, i.e., . To achieve fair rate allocation,
we need to add an additional scaling factor to the AI algorithm.
To illustrate why this is the case, consider the simple AIMD
control mechanism applied to two competing flows where each
flow (, 2) uses a separate AI parameter but a common
MD parameter . At the end of the th congestion epoch that
includes rounds of AI and one round of MD in each
epoch, we have

Eventually, each flow achieves a congestion window that is
proportional to its AI parameter, . Indeed, the ratio of the con-
gestion windows of the two flows approaches for large
values of , and

Hence, to allocate bandwidth fairly among two flows, we
need to scale each flow’s AI parameter using its own RTT.
For this purpose, we use as a common-base RTT for all the
flows. Thus, the new AI scaling parameter, , becomes

(8)

E. Protocol Description

Putting all the above-discussed building blocks together, now
we present the complete VCP protocol.

1) The Router: The VCP router computes and encodes a load
factor based on the number of incoming packets and the average
queue for each output link. It tags the encoded load factor in
the IP header of each outgoing data packets if it is larger than
the one, , carried by the packets from the upstream router. The
VCP router also runs two priority queues with the high priority
queue for the ACK packets (to minimize the feedback delay)
and the low priority queue for the data packets. The VCP router
algorithm is described as follows.

R.1) For each incoming packet of size , update a counter :

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

R.2) When the queue sampling timer fires at time :

where and ms. Like RED, VCP maintains a
low-pass filtered queue length using exponentially weighted
moving average;

R.3) When the load factor measurement timer fires:

where , ms, link target utilization ,
is the link capacity, and the encoding function is described

in Section III-B;

R.4) For each dequeued data packet that bears an encoded
load factor from upstream:

2) The End Hosts: The VCP receiver is the same as the TCP
Reno receiver, except that it copies the encoded two-bit load
factor ECN from the data packet to its corresponding ACK
packet.

The VCP sender builds upon the TCP Reno sender. It behaves
like TCP Reno when packet loss happens. The VCP sender ini-
tializes the encoded load factor in the data packet IP header to
the smallest one, i.e., . It switches its window-based con-
trol among MI/AI/MD according to the encoded load factor
carried back by the ACK packet. This switching is performed as
follows.

S.1) For the low-load factor , per ACK:

where , is the smoothed RTT measurement in
ms, ms, and the MI scaling limiter (to
bound the bursty traffic introduced due to the MI scaling);

S.2) For the high-load factor , per ACK:

where , the AI scaling limiter (to bound the
bursty traffic introduced due to the AI scaling);

S.3) For the overload factor , do the following
cut once, then firstly freeze for one and secondly
follow S.2 for one , regardless of the remaining load factor
feedbacks during these two time periods:

TABLE I
VCP PARAMETER SETTINGS

where .

Table I summarizes the VCP router (upper part) and end-host
(lower part) parameters and their typical values.

IV. PERFORMANCE EVALUATION

In this section, we use extensive ns2 simulations to eval-
uate the performance of VCP for a wide range of network
scenarios including varying the link capacities in the range

, round trip times in the range ms s ,
numbers of long-lived, FTP-like flows in the range ,
and arrival rates of short-lived, web-like flows in the range

s s . We always use two-way traffic with con-
gestion resulted in the reverse path. The bottleneck buffer size
is set to one bandwidth-delay product. The data packet size is
1000 bytes, while the ACK packet is 40 bytes. All simulations
are run for at least 120 s to ensure that the system has reached
its steady state. The average utilization statistics neglect the
first 20% of simulation time. For all the time-series graphs,
utilization and throughput are averaged over 500 ms interval,
while queue length and congestion window are sampled every
10 ms. Throughout all the simulations in this paper, we use the
same set of parameter values listed in Table I. This suggests
that VCP is robust in a large variety of environments.

For comparison purpose, we also run simulations for other
schemes including TCP Reno [1], SACK [34], HSTCP [13],
HTCP [31], STCP [26], FAST [22], BIC [48], CUBIC [41], and
XCP [25], under the same network and traffic settings. Except
for XCP which has its own router algorithm, we run RED [15]
with ECN enabled in the bottleneck routers for each of the above
schemes. The protocol parameter settings of these TCP schemes
(including RED) are those recommended by their respective au-
thors. We choose to run RED/ECN because both VCP and XCP
require router support; it is unfair to compare them with the TCP
schemes without AQM at the routers. Without AQM, these TCP
schemes will result in much larger bottleneck queue length than
otherwise. As stated in Section I, since the Internet is increas-
ingly used to carry real-time traffic like VoIP, keeping the bot-
tleneck queues small is essential and should be a requirement
for the future congestion control protocols.

The simulation results demonstrate that, for a wide range of
scenarios, VCP and XCP significantly outperforms the other
eight schemes. VCP achieves comparable performance to XCP,
i.e., exponential convergence to high utilization, negligible
packet drop rate, low persistent queue and reasonable fairness,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 7

Fig. 3. One bottleneck with the capacity varying from 500 kbps to 5 Gbps. Note the logarithmic scale of the x-axis. (a) Bottleneck Average Utilization. (b)
Bottleneck Average Queue. (c) Packet Drop Rate.

Fig. 4. One bottleneck with the round-trip propagation delay ranging from 1 ms to 1500 ms. (a) Bottleneck average utilization. (b) Bottleneck average queue. (c)
Packet drop rate.

except its significantly slower fairness convergence speed than
XCP. In other words, the one extra bit of congestion informa-
tion feedback of VCP does bring significant performance gain.

A. One Bottleneck

We first evaluate the performance of all the schemes for the
simple case of a single bottleneck link shared by multiple flows.
We study the effect of varying the link capacity, the round-trip
times, the number and the arrival rate of flows on the perfor-
mance of VCP. The basic setting is an 150 Mbps link with 80 ms
RTT where the forward and reverse path each has 30 FTP flows.
We evaluate the impact of each network parameter in isolation
while retaining the others as the basic setting. Each simulation
result is averaged over five simulation runs with random flow
start times. The simulation results are consistent; the deviation
is generally within a few percent of the average.

1) Varying Bottleneck Capacity: As illustrated in Fig. 3,
we observe that, among all the schemes, only VCP and XCP
achieve high utilization and no packet drops across
the whole range of bottleneck capacities varying from 500
kbps to 5 Gbps. (Note the logarithmic scale of the -axis of
the figures in this and the next subsections.) The utilization
gap between VCP and XCP is at most 6% across the entire
capacity range. However, VCP maintains much lower persistent
bottleneck queue length (less than 20% bottleneck buffer size,
mostly below 2%) than XCP (10%–47% buffer size). This
is because that the VCP router gives higher priority to ACK
packets than data packets, as described in Section III-E. We
believe that XCP should be able to achieve the same low-queue
performance if it does the same.

For all the other schemes, as we scale the bottleneck capacity
to beyond 200 Mbps, the bottleneck utilization mostly drops to
around 70%–80% (even less than 60% for HTCP). When the
capacity is below 5 Mbps, all these schemes result in higher than
4% packet loss rate.

2) Varying Feedback Delay: We fix the bottleneck capacity
at 150 Mbps and vary the round-trip propagation delay from 1
ms to 1.5 s. As shown in Fig. 4, we notice that, in most cases,
VCP’s bottleneck utilization is higher than 90%, and the av-
erage bottleneck queue is less than 2% buffer size. We also ob-
serve that VCP’s RTT parameter scaling is more sensitive to
very low values of RTT (e.g., ms), thereby causing the av-
erage queue length to grow to about 10%–20% buffer size. For
the RTT values larger than 800 ms, VCP obtains lower utiliza-
tion (80%–90%) since the link load factor measurement interval

ms is much less than the flow RTTs. As a result, the
load condition measured in each shows variations due to the
bursty nature of window-based control. This can be compen-
sated by increasing ;3 the tradeoff is that the link load mea-
surement will be less responsive. In all these cases of wide RTT
variation, we did not observe any packet drops in VCP.

Comparing to the other schemes, VCP’s performance is com-
parable to XCP’s (lower utilization but lower queue length) and
it performs significantly better than all the other TCP variants,
which achieve lower than 75% bottleneck utilization when the
RTT is higher than 200 ms.

3) Varying the Number of Long-Lived Flows: With an in-
crease in the number of forward FTP flows, we notice that the
traffic gets more bursty, as shown by the increasing trend of the
bottleneck average queue in Fig. 5. However, even when the net-
work is very heavily multiplexed by more than 500 flows (i.e.,
the average per-flow BDP is no more than 3 packets), VCP’s
90-percentile queue is still less than 20% of the buffer size. Its
average queue is consistently less than 5% buffer size across all
the simulation cases.

For high per-flow BDP scenarios, where there is no more than
10 flows on the forward path (i.e., the per-flow BDP is 150–1500

3For all the cases where RTT is larger than 800 ms, by simply increasing the
link load factor measurement interval t from 200 ms to 500 ms, VCP’s average
bottleneck utilization boosts to higher than 90% with the average queue lower
than 2% bottleneck buffer size.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. One bottleneck with the number of long-lived, FTP-like flows increasing from 1 to 1000. (a) Bottleneck Average Utilization, (b) Bottleneck Average
Queue, (c) Packet Drop Rate.

Fig. 6. One bottleneck with short-lived, web-like flows arriving/departing at a rate from 10/s to 1000/s. (a) Bottleneck Average Utilization, (b) Bottleneck Average
Queue, (c) Packet Drop Rate.

packets), only VCP and XCP achieve higher than 90% bottle-
neck utilization. The other schemes’ bottleneck utilization is
only between 40% and 70%, far less than that of VCP and XCP.

4) Varying Short-Lived Traffic: To study VCP’s performance
in the presence of variability and burstiness in flow arrivals,
we add short-lived traffic into the network. These flows arrive
according to the Poisson process, with the average arrival rate
varying from 10/s to 1000/s. Their transfer size obeys the Pareto
distribution with an average of 30 packets. As shown in Fig. 6,
VCP always maintains high utilization with small
queue lengths (less than 3% bottleneck buffer size) and no
packet drops, similar to XCP (which has higher queue lengths).

In summary, we note that across a wide range of network
configurations with a single bottleneck, VCP can achieve high
utilization, low persistent queue, and negligible packet drops.
VCP’s performance is comparable to XCP’s and is significantly
better than that of all the other schemes.

B. RTT Fairness

TCP flows with different RTTs achieve bandwidth allocations
that are proportional to where [30]. VCP al-
leviates this issue to some extent. Here we look at the RTT-fair-
ness of VCP and the other schemes. We have 30 FTP flows
sharing a single 150 Mbps bottleneck, with 30 FTP flows on the
reverse path. Each forward flow ’s RTT value

ms for . We perform eleven sets of simu-
lations with increasing from ms. When

ms, all the flows’ RTTs equal to 40 ms; As
increases to 4 ms, the RTTs are in the range of ms ms
with the RTT ratio of about 4; When ms, the RTTs
are in the range of ms ms with the RTT ratio of more
than 8.

Fig. 7. Jain’s fairness index under scenarios of one bottleneck link shared
by 30 flows, whose RTTs are in the ranges varying from [40 ms; 40 ms] to
[40 ms; 330 ms].

Fig. 7 shows that, in terms of RTT fairness, XCP performs the
best by achieving Jain’s fairness index [21] 4 of 1.0 across the
whole set of simulations, closely followed by VCP (0.94–1.0)
and CUBIC (0.94–0.98). All the other seven schemes fall short
of distributing bandwidth fairly among flows with heterogenous
RTTs.5Among the three RTT-fair schemes, XCP’s average bot-
tleneck utilization is 98% and its 90-percentile bottleneck queue
length is on average 30% bottleneck buffer size. In contrast,
VCP’s average bottleneck utilization is slightly less (94%) and
the 90-percentile bottleneck queue length is only 5% bottleneck
buffer size, while CUBIC (with RED) achieves 88% average
bottleneck utilization and 10%-bottleneck-buffer-size 90-per-
centile queue.

The fairness discrepancy of VCP for large cases oc-
curs due to the following reason. A flow with very high RTT
is bound to have high values for their MI and AI parameters
due to parameter scaling as described in Section III-D. To pre-
vent sudden traffic bursts from such VCP flows which can cause

4It is defined by for flow rates x ; i 2 [1;N].

5It is debatable if we must allocate bandwidth equally regardless of flow RTT.
Here we assume we should do so. It is easy to tailor VCP (by using (7) instead of
(8) in Section III-D) to achieve bandwidth allocation proportional to RTT .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 9

Fig. 8. Seven bottlenecks with the capacity varying from 500 kbps to 2 Gbps. (a) Bottleneck Average Utilization, (b) Bottleneck Average Queue, (c) Packet Drop
Rate.

Fig. 9. Seven bottlenecks with the longest path’s round-trip propagation delay ranging from 1 ms to 1000 ms. (a) Bottleneck Average Utilization, (b) Bottleneck
Average Queue, (c) Packet Drop Rate.

the bottleneck instantaneous queue to increase substantially, we
place bounds on the actual values of these parameters (see Sec-
tion III-E). These bounds restrict the throughput of flows with
very high RTTs.

C. Multiple Bottlenecks

Now, we study the performance of VCP with a more com-
plex topology of multiple bottlenecks. For this purpose, we use
a typical parking-lot topology with seven links. There are 30
long FTP flows traversing all the links in the forward direction,
and 30 long FTP flows in the reverse direction. In addition, each
individual link has 5 cross FTP flows traversing in the forward
direction. We run two sets of simulations by varying link band-
width and path RTT, respectively, in a range of three orders of
magnitude.

1) Varying Bottleneck Capacity: First, we set all the bottle-
neck links’ one-way propagation delay to 5 ms. The longest
path’s round-trip propagation delay is 80 ms. We vary all the
bottleneck links’ bandwidth from 500 kbps to 2 Gbps. Fig. 8
shows that, for all the cases, VCP performs as good as in the
single-bottleneck scenarios. It achieves at least 93% average
bottleneck utilization (averaged among all the seven bottle-
necks), less than 5%-buffer-size average queue length and no
packet drops at all the bottlenecks.

In comparison to XCP, one key difference is that VCP penal-
izes flows that traverse more bottlenecks. For example, when
the bottlenecks’ capacity is 150 Mbps, VCP allocates 2.7 Mbps
to each long flow that traverses all the seven bottlenecks, and
10.0 Mbps to each cross flow that passes one bottleneck; while
under XCP, each long flow gets 3.8 Mbps and each cross flow
4.4 Mbps. So comparing to XCP, VCP’s bandwidth allocation
is more sensitive to the number of bottlenecks that a flow tra-
verses. We discuss the reason behind this in Section V. All the
other TCP variants exhibit similar behavior as VCP.

2) Varying Path RTT: Second, we fix all the bottlenecks’
bandwidth to 150 Mbps and vary the longest path’s round-trip
propagation delay from 1 ms to 1 s. Again, VCP and XCP out-
perform all the other schemes, as shown in Fig. 9. Comparing
to XCP, VCP trades a few percent of bottleneck utilization for
lower bottleneck queue length. Both VCP and XCP drop no
packet for all the simulation cases.

In brief summary, the simulation results we obtain for the
multiple-bottleneck scenarios are consistent with the single-bot-
tleneck cases. VCP’s performance is close to XCP’s; both sig-
nificantly outperform the other TCP variants.

D. Dynamics

All the previous simulations focus on comparing the steady-
state behavior of VCP and the other schemes. Now, we investi-
gate the short-term dynamics of VCP.

1) Convergence Behavior: To study the convergence be-
havior of VCP, we revert to the single bottleneck link with a
bandwidth of 45 Mbps where we introduce 5 flows into the
system, one after another, with starting times separated by
100 s. We also set the RTT values of the five flows to different
values. The reverse path has 5 flows that are always active.
Fig. 10 illustrates that VCP reallocates bandwidth to new flows
whenever they come in without affecting its high utilization
or causing large instantaneous queue. However, VCP takes a
much longer time than XCP to converge to the fair allocation.
We theoretically quantify the fairness convergence speed for
VCP in Theorem 4 in Section V.

2) Sudden Demand Change: We illustrate how VCP reacts
to sudden changes in traffic demand using a simple simula-
tion. Consider an initial setting of 50 forward FTP flows with
varying RTTs (uniformly chosen in the range ms ms)
sharing a 200 Mbps bottleneck link. There are 50 FTP flows
on the reverse path. At s, 150 new forward FTP flows
become active; then they leave at 160 s. Fig. 11 clearly shows

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. VCP converges onto good fairness, high utilization and small queue. However, VCP’s sub-linear fairness convergence time is significantly longer than
XCP’s logarithmic time. (a) VCP Flow Throughput, (b) VCP Bottleneck Utilization/Queue, (c) XCP Flow Throughput.

Fig. 11. VCP is robust against and responsive to sudden, considerable traffic demand changes, and at the same time maintains low persistent bottleneck queue.
(a) Flow Congestion Window, (b) Bottleneck Utilization, (c) Bottleneck Queue.

that VCP can adapt sudden fluctuations in the traffic demand.
(Fig. 11(a) draws the congestion window dynamics for four ran-
domly chosen flows.) When the new flows enter the system, the
flows adjust their rates to the new fair share while maintaining
the link at high utilization. At s, when three-fourths
of the flows depart creating a sudden drop in the utilization, the
system quickly discovers this and ramps up to 95% utilization
in about 5 seconds. Notice that during the adjustment period,
the bottleneck queue remains much lower than its full size. This
simulation shows that VCP is responsive to sudden, significant
decrease/increase in the available bandwidth. This is no surprise
because VCP switches to the MI mode which by nature can track
any bandwidth change in logarithmic time (see Theorem 3 in
Section V).

Besides what has been discussed so far, it is also straight-for-
ward to use VCP to provide differentiated bandwidth to com-
peting flows by augmenting (8) with a weight factor. We refer
the reader to [47] for more details.

V. A FLUID MODEL

To obtain insight into the VCP protocol, in this section, we an-
alyze its stability, fairness, and convergence properties using a
simplified fluid approximation model. We consider a single bot-
tleneck with infinite buffer traversed by synchronous flows
that have the same, constant RTT, .

To make the analysis tractable, we use the following load-
factor guided algorithm to approximate the behavior of VCP as
defined by (2)–(4) in Section III-C:

(9)

with the MI parameter

(10)

where is the stability coefficient of the MI parameter. In
the remainder of this section we will refer to this model as the
MIAIMD model. This model makes three simplifications com-
paring to the VCP protocol. First, it uses the exact load factor

Fig. 12. A simplified VCP model. The source sending rate at time t � T is
used by the router to calculate a load factor �, which is echoed back from the
destination to the source at time t. Then the source adjusts its MI parameter
�(�(t)) based on the load factor �(t).

value , while VCP uses a quantized value of the load factor.
Second, in the MI and AI phases, VCP uses either the multi-
plicative factor or the additive factor term, but not both as the
MIAIMD model does. Third, in the overload region, VCP ap-
plies a constant MD parameter instead of .

As shown in Fig. 12, the load factor received by the
source at a time is computed based on the sender’s rate at time

, i.e.,

(11)

where is the flow ’s congestion window at time , is
the link capacity, and is the target link utilization.
We assume that is a positive, continuous and differentiable
function, and is a constant.

Since is proportional to the available bandwidth, the
MIAIMD algorithm tracks the available bandwidth exponen-
tially fast and thus achieves efficiency. It also converges to fair-
ness as we will show in Theorem 2.6

Using (9) to sum over all flows yields

(12)

6Theorem 2 actually proves the max-min fairness for a general multiple-bot-
tleneck topology. For a single link, max-min fairness means each flow gets an
equal share of the link capacity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 11

where is the sum of all the congestion win-
dows. This result, together with (10) and (11), leads to

(13)

where . We assume the initial condition
(i.e.,), for all . In [47], we prove the
following global stability result.

Theorem 1: Under the model (9), (10), and (11) where a
single bottleneck is shared by a set of synchronous flows with
the same RTT, if , then the delayed differential equation
(13) is globally asymptotically stable with a unique equilibrium

, and all the flows have the same steady-state
rate .

This result has two implications. First, the sufficient condi-
tion holds for any link capacity, any feedback delay,
and any number of flows. Furthermore, the global stability re-
sult does not depend on the network parameters. Second, this
result is optimal in that at the equilibrium, the system achieves
all the design goals: high utilization, fairness, zero steady-state
queue length, and zero packet loss rate—this is because we can
always adjust such that the system stabilizes at a steady-state
utilization slightly less than 1.

Importance of : While (11) defines as the target uti-
lization, the actual utilization is where

is the per-flow BDP. To achieve a certain target utiliza-
tion , should be treated as a control variable and set to

. To make this adjustment process automatic
without even knowing , and , we vary at a time scale
that is much larger than one RTT, i.e.,

(14)

where , is the sign function, is a low-
pass filtered link utilization which is very easy to measure at the
router, and is a constant stepsize (e.g., 0.01). This
adjustment process will stop if and only if the target utilization

has been achieved.
Next, we consider a more general multiple-bottleneck net-

work topology. Let denote the maximal link load factor
on flow ’s path that includes a subset of links, i.e.,

. The MI parameter of flow is then

(15)

where , , and the
subset of flows . We prove the
following fairness result in [47].

Theorem 2: In a multiple-bottleneck topology where all flows
have the same round-trip time, if there exists a unique equilib-
rium, then the algorithm defined by (9) and (15) allocates a
set of max-min fair rates where

.

To better understand this result note that a flow’s sending rate
is determined by the most congested bottleneck link on its path.

Thus, the flows traversing the most congested bottleneck links
in the system will naturally experience the lowest throughput.

Having established the stability and fairness properties of the
MIAIMD model, we now turn our attention to the convergence
of the VCP protocol. The following two theorems, proved in
[47], give the convergence properties.

Theorem 3: The VCP protocol takes RTTs to claim
(or release) a major part of any spare (or over-used) capacity

.

Theorem 4: The VCP protocol takes RTTs to
converge onto fairness for any link, where is the per-flow
bandwidth-delay product, and is the largest congestion
window difference between flows sharing that link .

Not surprisingly, due to the use of MI in the low-load re-
gion, VCP converges exponentially fast to high utilization. On
the other hand, VCP’s convergence time to fairness is similar to
other AIMD-based protocols, such as TCP+AQM. In contrast,
explicit feedback schemes like XCP require only
RTTs to converge to fairness. This is because the end-host based
AIMD algorithms improve fairness per AIMD epoch, which in-
cludes rounds of AI and one round of MD, while the
equivalent operation in XCP takes only one RTT.

The comparison between the simulation results of VCP and
the analytical results of the MIAIMD model suggests that the
two differ most notably in terms of the fairness model. While
in the case of multiple bottleneck links, the MIAIMD model
achieves max-min fairness, VCP tends to allocate more band-
width to flows that traverse fewer bottleneck links (see Sec-
tion IV-C). This is because, given only two ECN bits to rep-
resent the load factor, some amount of information is lost in the
load factor quantization process (Section III-B).

VI. DISCUSSIONS

Since VCP switches between MI, AI, and MD modes based
on the load factor feedback, there are natural concerns with re-
spect to the impact of these switches on the system stability,
efficiency, and fairness, particularly in systems with highly het-
erogeneous RTTs. We now discuss these concerns as well as
VCP’s TCP-friendliness and incremental deployment issues.

A. Stability Under Heterogeneous Delays

Although the MIAIMD model presented in Section V is prov-
ably stable, it assumes synchronous feedback. To accommodate
heterogeneous delays, VCP scales the MI/AI parameters such
that flows with different RTTs act as if they were having the
same RTT. This scaling mechanism is also essential to achieving
fair bandwidth allocation, as discussed in Section III-D.

In normal circumstances, VCP makes a transition to MD only
from AI. However, even if VCP switches directly from MD to
MI, if the demand traffic at the router does not change signifi-
cantly, VCP will eventually slide back into AI.

Finally, to prevent the system from oscillating between MI
and MD, we set the load factor transition point to 80%, and
set the MD parameter to . This gives us a safety
margin of 7.5%.

The extensive simulation results presented in Section IV sug-
gest that VCP is indeed stable over a large variety of network
scenarios including per-flow bandwidths from 16.7 kbps to 167
Mbps and RTTs from 1 ms to 1.5 s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. The congestion window dynamics of two flows with dramatically dif-
ferent RTTs (50 ms versus 500 ms). Due to its longer delay, the larger-RTT
flow always slides its mode later than the one with smaller RTT (see the re-
gions labeled as A and B). However, the effect of this asynchronous switching
is accommodated by VCP and does not prevent it from maintaining stability and
achieving efficiency and fairness.

B. Influences of Mode Sliding

From an efficiency perspective, VCP’s goal is to bring and
maintain the system in the high utilization region. While MI
enables VCP to quickly reach high link utilization, VCP needs
also to make sure that the system remains in this state. The main
mechanisms employed by VCP to achieve this goal is the scaling
of the MI/AI parameters for flows with different RTTs. In ad-
dition to improving fairness, this scaling is essential to avoid
oscillations. Otherwise, a flow with a low RTT may apply MI
several times during the estimation interval, , of the link load
factor. Other mechanisms employed by VCP to maintain high
efficiency include choosing an appropriate value of the MD pa-
rameter to remain in the high utilization region, using a safety
margin between MI and AI, and bounding the burstiness (Sec-
tion III-E).

As discussed in Section III-D, there are two major concerns
with respect to fairness. First, a flow with a small RTT probes
the network faster than a flow with a large RTT. Thus, the former
may increase its bandwidth much faster than the latter. Second,
it will take longer for a large-RTT flow to switch from MI to
AI than a small-RTT flow. This may give the large-RTT flow
an unfair advantage. VCP addresses the first issue by using the
RTT scaling mechanism [see (6) and (8) in Section III-D]. To ad-
dress the second issue, VCP bounds the MI gain, as discussed in
Section III-E. To illustrate the effectiveness of limiting the MI
gain, Fig. 13 shows the congestion window evolution for two
flows with RTTs of 50 ms and 500 ms, respectively, traversing
a single 10 Mbps link. At time 12.06 s, the 50 ms-RTT flow
switches from MI to AI. In contrast, due to its larger RTT, the
500 ms-RTT flow keeps performing MI until time 12.37 s. How-
ever, because VCP limits the MI gain of the 500 ms-RTT flow,
the additional bandwidth acquired by this flow during the 0.31
s interval is only marginal when compared to the bandwidth ac-
quired by the 50 ms-RTT flow.

C. TCP-Friendliness

We define a VCP flow to be TCP-friendly with a competing
TCP flow if the steady state throughput of the TCP flow matches
what it would when competing with a normal TCP flow [36].
However in high BDP networks, a VCP flow should be able
to leverage the additional bandwidth unused by the TCP flows
while not affecting the throughput of TCP flows. Because VCP
operates with AIMD in steady state, it is straight-forward to
tailor it to exhibit TCP-friendly behavior. At the end host, to
match TCP’s AI parameter, we need to change the VCP AI pa-
rameter to for according to the
TCP-friendly general AIMD formula [49]. At the router, when

the encoded load factor , we need to replace the orig-
inal deterministic ECN marking with a probabilistic one similar
to RED [15]. For TCP sources, in accordance with the ECN pro-
posal, the encoded load factors and correspond to
no congestion, while to congestion.

D. Incremental Deployment

If VCP is to be gradually deployed on the Internet, the deploy-
ment could follow the similar path as CSFQ [42] and XCP on an
island-by-island basis. Therefore, even though VCP looks sim-
pler than XCP, the deployment cost is quite similar, not much
less. The deployment, however, will still benefit from VCP’s
simplicity: It does not need a new field in the IP header; the
needed two-bit space has been standardized for congestion con-
trol purposes by the current ECN proposal and VCP uses it in a
way that is a natural generalization of ECN. From the end hosts
perspective, VCP can be made TCP-friendly, as described ear-
lier. On the network side, as we have shown, the VCP router is
scalable in that it does not keep any per-flow state and its algo-
rithm complexity is very low. This makes it deployable in high
speed core networks. The traffic inside an VCP island will im-
mediately enjoy VCP’s capability of maintaining high utiliza-
tion, low persistent queue and minimal packet drop. The cross
traffic that passes an VCP island between two border routers
will be mapped onto one VCP flow from the ingress router to
the egress router. These border routers do need to keep per-
VCP-flow state. However, since the VCP flow is aggregated
from the passing micro-flows, this will not cause scalability
problems.

VII. RELATED WORK

This paper builds upon a great body of related work, particu-
larly XCP [25], TCP [1], [14], [17], [34], AIMD [8], [21], AQM
[2], [15], [29] and ECN [39], [40]. Congestion control is pio-
neered by TCP and AIMD. The research on AQM starts from
RED [15], [32], followed by Blue [12], REM [2], PI controller
[16], AVQ [29], and CHOKe [37], etc. Below we relate VCP to
three categories of congestion control schemes and a set of an-
alytical results.

Explicit Rate Based Schemes: XCP regulates source sending
rate with decoupled efficiency control and fairness control and
achieves excellent performance. ATM ABR service (e.g., see
[19] and [24]) previously proposes explicit rate control. VCP
does learn from these schemes. Nevertheless, VCP is primarily
an end-host based protocol. This key difference brings new de-
sign challenges not faced by XCP (and the ATM ABR schemes)
and thus VCP is not just a “two-bit” version of XCP. The idea
of classifying network load into different regions is originally
presented in [20]. The link load factor is suggested as a con-
gestion signal in [19], based on which VCP quantizes and en-
codes it for a more compact representation for the degree of con-
gestion. MaxNet [46] uses the maximal congestion information
among all the bottlenecks to achieve max-min fairness. Quick-
Start [18] occasionally uses several bits per packet to quickly
ramp up source sending rates. VCP is complementary to Quick-
Start as it constantly uses two bits per packet.

Congestion Notification Based Schemes: For high BDP
networks, according to [25], the performance gap between
XCP and [42] with one-bit
ECN support seems large. VCP’s performance is comparable to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIA et al.: ONE MORE BIT IS ENOUGH 13

XCP’s, as shown in Section IV. VCP generalizes one-bit ECN
and applies some ideas from these AQM schemes. For example,
RED’s queue-averaging idea, REM’s match-rate-clear-buffer
idea and AVQ’s virtual-capacity idea obviously find themselves
in VCP’s load factor calculation in (1). This paper demonstrates
that the marginal performance gain from one-bit to two-bit ECN
feedback could be significant. On the end-host side, two-bit
ECN is also used to choose different decrease parameters for
TCP in [10], which is very different from the way VCP uses.
GAIMD [49] and the binomial control [3] generalize the AIMD
algorithm, while VCP goes even further to combine MIMD
with AIMD.

Pure End-to-End Schemes: Recently there have been many
studies on the end-to-end congestion control for high BDP net-
works. HSTCP [13] extends the standard TCP by adaptively
setting the increase/decrease parameters according to the con-
gestion window size. HTCP [31] employs an adaptive AIMD
with its parameters set as functions of the elapsed time since the
last congestion event. Adaptive TCP [28] also applies dynamic
AIMD parameters with respect to the changing network con-
ditions. STCP [26] changes to a fixed MIMD algorithm. FAST
[22] uses queuing delay, like TCP Vegas [6], instead of packet
loss, as its primary congestion signal and improves Vegas’ Addi-
tive-Increase-Additive-Decrease policy with a proportional con-
troller. BIC/CUBIC [41], [48] adds a binary search phase into
the standard TCP to probe the available bandwidth in a log-
arithmic manner. LTCP [5] layers congestion control of two
scales for high speed, large RTT networks. TCP Westwood [7]
enhances the loss-based congestion detector using more robust
bandwidth estimation techniques. All these end-to-end schemes
do not need explicit feedback. Therefore, it is hard for them
to achieve both low persistent bottleneck queue length and al-
most zero congestion-caused packet loss rate. VCP does need
explicit two-bit ECN but is able to maintain low queue and al-
most zero loss. The extensive simulations in Section IV show
that, even with AQM/ECN support from network, these schemes
still cannot achieve similar performance as VCP does in high
BDP networks.

Analytical Results: The nonlinear optimization framework
[27] provides the above schemes a unified theoretic underpin
and proposes a class of control algorithms. The local stability
of the algorithms when homogeneous delay is present is con-
sidered by [23], [44] and then extended to the case of heteroge-
neous delays by [33]. The local stability of a modified algorithm
for the case of heterogeneous delays is proved by [51], which es-
tablishes a model that is similar to what we show in Section V.
In contrast, a global stability result is obtained in this paper for
the case of a single bottleneck with homogeneous delays. The
global stability of more general congestion controllers are con-
sidered by other researchers, e.g., in [9], [45], and [50].

Variable-structure control with sliding modes has a long his-
tory in control theory [11], [43]. It is useful when a set of fea-
tures are desired in a system but no single algorithm can provide
all of them. Our work can be viewed as an application of this
idea to network congestion control.

VIII. SUMMARY AND FUTURE WORK

In this paper, we propose VCP, a simple, low-complexity con-
gestion control protocol for high BDP networks. Using exten-

sive ns2 simulations, we show that VCP achieves high utiliza-
tion, negligible packet loss rate, low persistent bottleneck queue,
and reasonable fairness. VCP achieves all these desirable prop-
erties while requiring only two bits to encode the network con-
gestion information. Since it can leverage the two ECN bits
to carry this information, VCP requires no changes of the IP
header. In this respect, VCP can be seen as an extension of the
TCP+AQM/ECN proposals that scales to high BDP networks.

To better understand the behavior of VCP, we propose a fluid
model, and use this model to analyze the efficiency, fairness, and
convergence properties of a simplified version of VCP. Particu-
larly, we prove that the model is globally stable for the case of a
single bottleneck link shared by synchronous, long-lived flows
with identical RTTs.

As future work, it would be interesting to study if we can de-
sign a pure end-to-end VCP without any explicit congestion in-
formation from network. One possibility would be to use packet
loss to differentiate between overload and high-load regions
and to use RTT variation to differentiate between high-load and
low-load regions. While in this paper we evaluate VCP through
extensive simulations, ultimately, only a real implementation
and deployment will allow us to asses the strengths and limi-
tations of VCP.

The ns2 implementation and simulation code of VCP is avail-
able at http://networks.ecse.rpi.edu/~xiay.

ACKNOWLEDGMENT

The authors would like to thank the Editor and the anonymous
reviewers of this journal, the SIGCOMM reviewers, X. Fan,
S.Floyd, D. Harrison, J. Hu, D. Joseph, J. Kannan, D. Katabi,
Y. Kuang, K. K. Ramakrishnan, S. Shenker, L. Shi, G. Wang,
and J. Wen for their comments that greatly help improve the
quality of this paper.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
IETF RFC 2581, Apr. 1999.

[2] S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queue man-
agement,” IEEE Network, vol. 15, no. 3, pp. 48–53, May 2001.

[3] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algo-
rithms,” Proc. INFOCOM’01, Apr. 2001.

[4] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. New York:
Simon & Schuster, 1991.

[5] S. Bhandarkar, S. Jain, and A. Reddy, “Improving TCP performance
in high bandwidth high RTT links using layered congestion control,”
Proc. PFLDNet’05, Feb. 2005.

[6] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion avoid-
ance on a global Internet,” IEEE J. Sel. Areas Communications, vol.
13, no. 8, pp. 1465–1480, Oct. 1995.

[7] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang, “TCP
Westwood: End-to-end congestion control for wired/wireless net-
works,” Wireless Netw. J., vol. 8, no. 5, pp. 467–479, Sep. 2002.

[8] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks,” J. Comput. Netw. ISDN,
vol. 17, no. 1, pp. 1–14, Jun. 1989.

[9] S. Deb and R. Srikant, “Global stability of congestion controllers
for the Internet,” IEEE Trans. Autom. Control, vol. 48, no. 6, pp.
1055–1060, Jun. 2003.

[10] A. Durresi, M. Sridharan, C. Liu, M. Goyal, and R. Jain, “Multilevel
explicit congestion notification,” Proc. SCI’01, Jul. 2001.

[11] C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Ap-
plications. New York: Taylor and Francis, Aug. 1998.

[12] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The BLUE active queue
management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 8, pp.
513–528, Aug. 2002.

[13] S. Floyd, “Highspeed TCP for large congestion windows,” IETF RFC
3649, Dec. 2003.

[14] S. Floyd and T. Henderson, “The newreno modification to TCP’s fast
recovery algorithm,” IETF RFC 2582, Apr. 1999.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[15] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 8, pp.
397–413, Aug. 1993.

[16] C. Hollot, V. Misra, D. Towlsey, and W. Gong, “On designing im-
proved controllers for AQM routers supporting TCP flows,” Proc. IN-
FOCOM’01, Apr. 2001.

[17] V. Jacobson, “Congestion avoidance and control,” Proc. SIG-
COMM’88, Aug. 1988.

[18] A. Jain and S. Floyd, “Quick-start for TCP and IP,” IETF Internet Draft
Draft-Amit-Quick-Start-02.txt, Oct. 2002.

[19] R. Jain, S. Kalyanaraman, and R. Viswanathan, “The OSU scheme
for congestion avoidance in ATM networks: Lessons learnt and exten-
sions,” Perf. Eval., vol. 31, no. 1, pp. 67–88, Nov. 1997.

[20] R. Jain and K. K. Ramakrishnan, “Congestion avoidance in computer
networks with a connectionless network layer: Concepts, goals, and
methodology,” in Proc. IEEE Computer Netw. Symp., Apr. 1988.

[21] R. Jain, K. K. Ramakrishnan, and D. Chiu, “Congestion avoidance in
computer networks with a connectionless network layer,” DEC-TR-
506, Aug. 1987.

[22] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, architecture, al-
gorithms, performance,” in Proc. INFOCOM, Mar. 2004.

[23] R. Johari and D. Tan, “End-to-end congestion control for the Internet:
Delays and stability,” IEEE/ACM Trans. Netw., vol. 9, no. 12, pp.
818–832, Dec. 2001.

[24] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore, “The
ERICA switch algorithm for ABR traffic management in ATM net-
works,” IEEE/ACM Trans. Netw., vol. 8, pp. 87–98, Feb. 2000.

[25] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” Proc. SIGCOMM’02, Aug. 2002.

[26] T. Kelly, “Scalable TCP: Improving performance in highspeed wide
area networks,” ACM Computer Commun. Rev., vol. 32, no. 2, Apr.
2003.

[27] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[28] A. Kesselman and Y. Mansour, “Adaptive TCP flow control,”
PODC’03, Jul. 2003.

[29] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive vir-
tual queue (AVQ) algorithm for active queue management,” Proc. SIG-
COMM’01, Aug. 2001.

[30] T. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,”
IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 336–350, Jun. 1997.

[31] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-dis-
tance networks,” Proc. PFLDnet’04, Feb. 2004.

[32] D. Lin and R. Morris, “Dynamics of random early detection,” Proc.
SIGCOMM’97, Aug. 1997.

[33] L. Massoule, “Stability of distributed congestion control with hetero-
geneous feedback delays,” IEEE Trans. Autom. Control, vol. 47, no. 6,
pp. 895–902, Jun. 2002.

[34] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options,” IETF RFC 2018, Oct. 1996.

[35] Network Simulator ns-2 [Online]. Available: Http://www.isi.edu/
nsnam/ns/

[36] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” Proc.
SIGCOMM’98, Sep. 1998.

[37] R. Pan, K. Psounis, and B. Prabhakar, “CHOKe, a stateless active
queue management scheme for approximating fair bandwidth alloca-
tion,” Proc. INFOCOM’00, Mar. 2000.

[38] V. Paxson, “End-to-end Internet packet dynamics,” Proc. SIG-
COMM’97, Sep. 1997.

[39] K. K. Ramakrishnan and S. Floyd, “The addition of explicit congestion
notification (ECN) to IP,” IETF RFC 3168, Sep. 2001.

[40] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for con-
gestion avoidance in computer networks,” Proc. SIGCOMM’88, Aug.
1988.

[41] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” Proc. PFLDNet’05, Feb. 2005.

[42] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
Achieving approximately fair bandwidth allocations in high speed net-
works,” Proc. SIGCOMM’98, Sep. 1998.

[43] V. Utkin, “Variable structure systems with sliding modes,” IEEE Trans.
Autom. Control, vol. 22, no. 2, pp. 212–222, Apr. 1977.

[44] G. Vinnicombe, “On the stability of end-to-end congestion control
for the Internet,” Univ. Cambridge, Cambridge, U.K., Tech. Rep.
CUED/F-INFENG/TR.398, 2000.

[45] J. Wen and M. Arcak, “A unifying passivity framework for network
flow control,” IEEE Trans. Autom. Control, vol. 49, no. 2, pp. 162–174,
Feb. 2004.

[46] B. Wydrowski and M. Zukerman, “MaxNet: A congestion control ar-
chitecture for maxmin fairness,” IEEE Commun. Lett., vol. 6, no. 11,
pp. 512–514, Nov. 2002.

[47] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit
is enough,” Jun. 2005, U.C. Berkeley, Tech Report, [Online]. Available:
http://networks.ecse.rpi.edu/~xiay/pub/vcp_tr.pdf.

[48] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion con-
trol (BIC) for fast long-distance networks,” Proc. INFOCOM’04, Mar.
2004.

[49] Y. Yang and S. Lam, “General AIMD congestion control,” Proc.
ICNP’00, Nov. 2000.

[50] L. Ying, G. Dullerud, and R. Srikant, “Global stability of Internet con-
gestion controllers with heterogeneous delays,” in Proc. Amer. Control
Conf., Jun. 2004.

[51] Y. Zhang, S. Kang, and D. Loguinov, “Delayed stability and perfor-
mance of distributed congestion control,” Proc. SIGCOMM’04, Sep.
2004.

Yong Xia (S’03–M’04) received the B.E. degree
from Huazhong University of Science and Tech-
nology, Wuhan, China, the M.E. degree from the
Institute of Automation, Chinese Academy of Sci-
ences, Beijing, China, and the Ph.D. degree from
Rensselaer Polytechnic Institute, Troy, NY, in 1994,
1998, and 2004, respectively.

He is a Research Manager at NEC Laboratories,
China, where he works on mobile networking. Previ-
ously, he was with Microsoft and China Telecom. He
was a Visiting Research Student at the University of

California, Berkeley, in the summer 2003. He is a member of the ACM.

Lakshminarayanan Subramanian received the
B.Tech. degree from IIT-Madras, India, and the M.S.
and Ph.D. degrees from the University of California
at Berkeley.

He is an Assistant Professor in the Courant Insti-
tute of Mathematical Sciences, New York University,
New York. His research focuses primarily in the
areas of network security, routing protocols, conges-
tion control, Internet architecture and technologies
for developing countries.

Ion Stoica received the Ph.D. degree from the
Carnegie Mellon University, Pittsburgh, PA, in 2000.

He is an Associate Professor in the Electrican
Enginerring and Computer Science Department,
University of California, Berkeley, where he does
research on peer-to-peer network technologies in
the Internet, resource management, and network
architectures.

Dr. Stoica is the recipient of a Sloan Foundation
Fellowship (2003), a Presidential Early Career Award
for Scientists and Engineers (PECASE) (2002), and

the ACM Doctoral Dissertation Award (2001). He is a member of the ACM.

Shivkumar Kalyanaraman (S’93–M’97) received
the B.Tech. degree in computer science from IIT,
Madras, India, and the M.S. and Ph.D. degrees from
Ohio State University, Columbus.

He is a Professor at the Department of Electrical,
Computer and Systems Engineering at Rensselaer
Polytechnic Institute, Troy, NY. His research inter-
ests include various traffic management topics and
protocols for emerging tetherless networks. He is a
member of the ACM.

